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yonic environment has been shown to be remarkably influential on the developing organism, despite the
relative brevity of this developmental stage. The cells of the zygote and cleavage-stage embryo hold the potential to form all cell
lineages of the embryonic and extra-embryonic tissues, with gradual fate restriction occurring from the time of compaction and
blastocyst formation. As such, these cells carry with them the potential to influence the phenotype of all successive cell types
as the organism grows, differentiates and ages. The implication is, therefore, that sublethal adverse conditions which alter the
developmental trajectory of these cells may have long-term implications for the health and development of the resulting offspring.
One confirmed mechanism for the translation of environmental cues to phenotypic outcome is epigenetic modification of the
genome to modulate chromatin packaging and gene expression in a cell- and lineage-specific manner. The influence of the pericon-
ceptional milieu on the epigenetic profile of the developing embryo has become a popular research focus in the quest to understand

the effects of environment, nutrition and assisted reproduction technology on human development and health. RBMOnline
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Introduction

As worldwide dietary and lifestyle habits have changed in
the past century, interest has turned to the effects of both
nutrient quality and quantity and of activity levels not only
on the health of the individual but also on reproductive
success and on the health of each subsequent generation.
ter ª 2013, Reproductive Healthcare Ltd.
.rbmo.2013.06.003

as: Lucas, E Epigenetic effects on the embryo
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Equally, as the population of human children born after
intervention with assisted reproduction technologies
increases, it has become possible to learn more about their
development through childhood, puberty and into adult-
hood. The increased understanding of the relationship
between periconceptional environment and the long-term
health and disease risk of offspring, derived from both
Published by Elsevier Ltd. All rights reserved.

as a result of periconceptional environment and assisted reproduction
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human and animal studies, raises the issues of how to iden-
tify causative changes during early development and what
recommendations can be made to reduce the risk of adverse
effects. This review aims to examine current understanding
of the sensitivity of the periconceptional period of develop-
ment to environmental factors as well as how epigenetic
modification of the genome might contribute to the transla-
tion of environmental cues into phenotypic outcomes.

Due to the limitations of studying human pregnancy and
ethical implications of research intervention, as well as the
limited availability of human embryos for research, mouse
and other mammalian models (e.g. sheep, cow, rat, rabbit)
have been used widely for developmental and epigenetic
profiling studies. This review will focus largely on informa-
tion gained from animal studies, although data from human
studies will be highlighted wherever appropriate

Phenotypic similarities exist between human assisted
reproduction children and offspring in animal models of
both assisted reproduction treatment and suboptimal
maternal diet during the periconceptional period, including
the occurrence of cardiovascular changes, altered meta-
bolic activity and body fat characteristics, behavioural
changes, advanced bone development and altered immune
system responsiveness (reviewed by Fleming et al., 2011;
Sinclair et al., 2007). Thus, comparison of animal and
human data is relevant and offers the opportunity to under-
stand this sensitive period of development more clearly.
These animal models of assisted reproduction treatment
and maternal dietary effects are also associated with epige-
netic changes in the embryo as well as in fetal and adult off-
spring and have provided the stimulus, as well as the tools,
to investigate the epigenetic status of the human embryo.
For example, DNA methylation changes are observed in fetal
liver of sheep exposed to periconceptional methyl
donor-deficient diet (Sinclair et al., 2007) and maternal die-
tary effects on epigenetic and health status can be amelio-
rated in rat offspring by folic acid supplementation
(Lillycrop et al., 2005; Burdge et al., 2009).
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Epigenetics and preimplantation development

Epigenetic modifications refer to the association of specific
alterations to the DNA and its packaging within chromatin
which do not alter the DNA sequence itself but which con-
trol the expression of associated genes. These include DNA
methylation at cytosine bases, predominantly those located
in a CpG context, which is a particularly stable and heritable
mark (reviewed by Jones, 2012) as well as the modification
of a number of histone tail residues, which alters the elec-
trophysical relationships between the histone tail and local
DNA as well as recruiting chromatin modifying proteins to
the modified region (reviewed by Richly et al., 2010; Lenn-
artsson and Ekwall, 2009). Studies of environmental effects
on the human embryonic genome have focused predomi-
nantly on DNA methylation, due to a greater understanding
of this modification and its more discrete role compared
with the complex network of histone modifications. How-
ever, some histone modification data are available in animal
models and will be discussed.

Whole-genome sequencing of DNA methylation in mouse
oocytes and spermatozoa has confirmed that these cells
Please cite this article in press as: Lucas, E Epigenetic effects on the embryo
technology. Reproductive BioMedicine Online (2013), http://dx.doi.org/10
exhibit highly different levels and localization of DNA meth-
ylation (Kobayashi et al., 2012). Following fertilization,
rapid DNA demethylation occurs in the sperm-derived DNA
prior to combination of the parental genomes at syngamy
ready for first cell division (Ma et al., 2012; Smith et al.,
2012). In the mouse embryo, DNA methylation is progres-
sively lost from the maternally derived DNA until the blasto-
cyst stage. At this point in development, the first major
lineage specification event takes place resulting in an inner
cell mass, which will give rise to the embryo and yolk sac,
and in trophectoderm, which will form the placenta. Selec-
tive remethylation occurs in the inner cell mass and contin-
ues as lineage specification takes place (Smith et al., 2012,
reviewed by Hackett and Surani, 2013). Studies up to the
blastocyst stage suggest this process is largely conserved
in human, albeit with paternal demethylation occurring to
a lesser extent (Santos et al., 2010; Ma et al., 2012). Studies
of mouse somatic cell nuclear transfer embryos suggest the
process of DNA methylation remodelling targets specific
genomic regions, likely through oocyte-derived factors, to
ensure the appropriate methylation patterns are established
for continuing development (Chan et al., 2012). Species var-
iability in the DNA demethylation process has been observed
(Beaujean et al., 2004a,b), most likely reflecting differ-
ences in the timing of embryonic genome activation and
implantation between species. However, global and
sequence-specific analyses confirm some conservation of
preimplantation DNA methylation remodelling across spe-
cies, including in the human embryo (Fulka et al., 2004;
Beaujean et al., 2004a), as well as a failure of this process
in abnormal somatic cell nuclear transfer embryos (Chan
et al., 2012)

Studies in the mouse embryo demonstrate that histone
tail modifications also undergo a remodelling process during
the preimplantation period (Huang et al., 2007). Markers of
mature heterochromatin, such as localization of hetero-
chromatin protein 1 (HP1a) to highly compact chromatin
regions and trimethylation of lysine 20 on histone 4
(H4K20me3), are removed in parallel to DNA methylation
loss and/or are largely absent during preimplantation devel-
opment, reappearing during mid-gestation in association
with later lineage specification (Wongtawan et al., 2011).

A cascade of transcriptional activation in the human
embryo, initiating at the 2-cell stage of development with
significant activation from the 4- and 8-cell stages, confirms
the importance of appropriate epigenetic remodelling dur-
ing preimplantation development (Vassena et al., 2011; Fig-
ure 1). A failure to initiate transcription of specific genes
may have downstream effects on the activation of specific
expression pathways essential for successful development.
In the human blastocyst, dynamic regulation of epigenetic
genes such as DNA methyltransferases, chromatin modifiers
and histone deacetylases has been reported during trophec-
toderm specification (Assou et al., 2012). This suggests that,
as in animal models, the human trophectoderm lineage may
be highly susceptible to epigenetic misregulation
(Rugg-Gunn, 2012). However, the only human embryos
available to research are from subfertile couples that have
been produced and cultured in vitro – a considerable
caveat to interpretation.

Certain sequences have been identified as being
protected from DNA methylation remodelling, including
as a result of periconceptional environment and assisted reproduction
.1016/j.rbmo.2013.06.003
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Figure 1 During preimplantation development, the highly specialized oocyte and spermatozoon undergo extensive chromatin
remodelling in order to achieve the appropriate nuclear packaging for the initiation of embryonic gene expression. DNA methylation
and repressive histone modifications are removed during cleavage development and gradually replaced as the embryonic lineages
begin to differentiate at the blastocyst stage. Active histone modifications coincide with the initiation of embryonic transcription.
The dynamic nature of this very early developmental window makes it susceptible to perturbation, the consequences of which may
have a significant impact on downstream development.
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repetitive transposon-derived sequences and imprinted
genes (reviewed by Hackett and Surani, 2013), although
absolute protection from remodelling is unlikely (Small-
wood et al., 2011). Imprinted genes are of particular
interest for two reasons. The first is that imprinted genes
are frequently associated with control of growth and per-
turbation of their expression can therefore have signifi-
cant downstream consequences. The second reason is
that the expression level of imprinted genes is controlled
by methylation of one allele in a parent-specific manner.
The dosage-control mechanism imparted by this unique
status makes them informative sequences to analyse in
terms of the epigenetic variability induced by environ-
mental changes. Although imprinted genes have been
studied extensively in the context of developmental pro-
gramming and epigenetic susceptibility to the periconcep-
tional environment, a recent study suggests that these
genes are neither more susceptible to perturbation due
to their unique epigenetic status nor are they protected
(Radford et al., 2012). Further, a recent systematic
review has reported that in-vitro culture and maturation
of oocytes does not increase the risk of imprinting disor-
ders in several animal models, although data on human
oocyte maturation is limited (Anckaert et al., 2012).
These reports are consistent with variability in the meth-
ylation status of imprinted genes (Huntriss et al., 2013)
and in their responsiveness to environment, reported both
in studies of embryonic development (Puumala et al.,
2012) and also in embryonic stem cell lines subjected to
in-vitro mimics of altered maternal environment (Kim
et al., 2007). The importance of imprinted genes in the
developmental control of growth and placentation likely
explains the high incidence of their alteration in those
manipulations resulting in changes to offspring growth
and development (Radford et al., 2012).
Please cite this article in press as: Lucas, E Epigenetic effects on the embryo
technology. Reproductive BioMedicine Online (2013), http://dx.doi.org/10
Epigenetic effects of assisted reproduction
technologies

Emerging evidence suggests that the protocols and culture
media used in human IVF can influence embryonic cell num-
bers and the birthweights of children from singleton preg-
nancies (Vergouw et al., 2012; Nelissen et al., 2012;
Dumoulin et al., 2010), although comparisons to naturally
conceived children are often lacking. Importantly, although
birthweight is convenient to measure, it is not an infallible
marker of adverse periconceptional environment and should
not be used as the sole predictive measure of periconcep-
tional environment on later health (Schulz, 2010). This high-
lights the need for animal studies to identify those markers
which could be used to predict the long-term health of off-
spring exposed to suboptimal environments during the per-
iconceptional period
Assisted reproduction protocols

Transcriptional analysis of human oocytes suggests that
those exposed to in-vitro maturation (IVM) procedures
retain an immature gene expression profile despite display-
ing morphological maturity (Wells and Patrizio, 2008)
although IVM has been reported not to influence birthweight
versus comparable cycles without IVM (Fadini et al., 2012).
In mouse, IVM reportedly down-regulates the expression and
protein concentrations of epigenetic modifiers GCN5 and
HDAC1, associated with histone acetylation levels, in the
oocyte and 2-cell embryo (Wang et al., 2010). No change
in acetylation of their common target, histone H3, was
observed and expression levels recovered by the later cleav-
age stages; however, it remains to be seen whether other
proteins were compensating for the loss of these enzymes
as a result of periconceptional environment and assisted reproduction
.1016/j.rbmo.2013.06.003
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and also how the IVM process influenced the expression of
the transcripts (Wang et al., 2010).

Globally, the extent of DNA demethylation in the pater-
nal pronucleus of rat zygotes was reduced after IVF or intra-
cytoplasmic sperm injection (ICSI) compared with in-vivo
embryos (Yoshizawa et al., 2010), although the influence
of in-vitro culture per se is unclear. Conflicting reports sug-
gest that there either is no effect of culture on in-vivo fer-
tilized rat embryos (Yoshizawa et al., 2010) or that culture
itself limits the demethylation process (Zaitseva et al.,
2007). Procedural variations cannot be excluded in these
differing outcomes, but analysis of specific loci is lacking
in both studies precluding further interpretation. In mouse
embryos, incomplete DNA demethylation status by the
2-cell stage of development was influenced by in-vitro cul-
ture protocol as well as by the use of superovulation (Shi
and Haaf, 2002). In mouse models, brief culture alone has
been shown to be sufficient to induce phenotypic change
in offspring following blastocyst collection and embryo
transfer (Watkins et al., 2007) including raised systolic
blood pressure and altered metabolic parameters.

Another study in mouse drawing comparison between
IVF- and ICSI-produced blastocysts reported that the influ-
ence of ICSI on the blastocyst transcriptome was consider-
ably larger than the effect of suboptimal culture
conditions (to be discussed), with almost 25-fold more
genes altered by ICSI according to microarray analysis
(Giritharan et al., 2010). Interestingly, the same study
found reduced trophoectoderm and inner cell mass cell
numbers in ICSI embryos, despite morphological
stage-matching, suggesting that growth may also be altered
in these embryos (Giritharan et al., 2010). Although it is
tempting to speculate that these differences may be due
to epigenetic change, a recent report in human showed no
difference in global DNA methylation levels and chromatin
organization between IVF- and ICSI-produced embryos,
although abnormal profiles in both groups were consistent
with developmental failure (Santos et al., 2010). Further-
more, studies in human embryos and gametes suggest that
the H19 differentially methylated region (DMR) is not sus-
ceptible to culture-induced DNA methylation changes, since
control blastocysts exhibited the expected paternal methyl-
ation as did 21 of 28 abnormal blastocysts examined (Ibal-
a-Romdhane et al., 2011). In addition, although increased
variability in DNA methylation has been reported in IVF
twins at imprinted DMR (H19/IGF2 and KvDMR1) compared
with naturally conceived twins, the differences were not
significant (Li et al., 2011b). The same authors report that
IVF–embryo transfer in mice does not result in significant
DNA methylation changes at imprinted loci, nor is there an
increased risk of altered methylation in F2 and F3 genera-
tions (Li et al., 2011a). Less well examined is the possible
role of changes to histone modifications. In mouse, IVF
embryos have been found to exhibit lower levels of tran-
scriptional activation-associated trimethylation at lysine 4
of histone H3 (H3K4me3) when compared with in-vivo fertil-
ized embryos or IVF embryos treated with the deacetylase
inhibitor Trichostatin A (Wu et al., 2012), which results in
an associated increase in H3K9me3. Although implantation
and development to birth and adulthood were not examined
in this study, a failure to activate genes required for early
post-implantation development may lead to alteration in
Please cite this article in press as: Lucas, E Epigenetic effects on the embryo
technology. Reproductive BioMedicine Online (2013), http://dx.doi.org/10
the differentiative capacity of the embryonic cells which
feasibly could impact upon the formation of the placenta
or on the development of early lineages during gastrulation
of the embryo; either scenario having the potential for
longer-term impact on the offspring.

Cryopreservation strategies have also been shown to
influence birthweight (Vergouw et al., 2012; Nelissen
et al., 2012) and embryonic gene expression (Shaw et al.,
2012), although interlaboratory variability in freezing and
thawing protocols will make it difficult to identify specific
factors involved in such outcomes.

Embryo culture media

A large-scale comparison of 13 human embryo culture pro-
tocols in a comprehensive mouse system revealed extremes
of developmental success including litter size, cell number
and gene expression variability depending on the media
used (Schwarzer et al., 2012). Although the results cannot
be extrapolated directly to potential effects in human
embryo culture, this study addressed a considerable issue
of human treatment – the inability to optimize conditions
on the model in which they are intended for use.
Large-scale animal studies are the only route through which
such testing is available but the limitations are consider-
able. Alterations in cell number observed between culture
protocols were attributed to an active process (i.e. early
lineage decisions) rather than passive (i.e. cell death in a
specific lineage) based on apoptotic labelling experiments
(Schwarzer et al., 2012) which supports the hypothesis that
the early environment indeed can influence the trajectory
of the embryo via differentiation processes. These findings
provide some explanation for the birthweight and pregnancy
rate differences reported by Dumoulin and colleagues
(2010) signifying that embryonic/extra-embryonic lineage
decisions initiated during the culture period or indeed in
response to the in-vivo environment may have a significant
impact on development in human and confirming existing
reports in animal models (Watkins et al., 2007, 2008; Maki-
nen et al., 2012). Another study comparing a smaller panel
of five commercially available human embryo culture media
in a mouse model focused specifically on imprinted gene
methylation, finding that all the media examined resulted
in a loss of methylation versus in-vivo-derived embryos
(between 7% and 50% loss depending on the media and
locus) (Market-Velker et al., 2010). The loss of methylation
was not dependent on the parental origin of the methylated
allele as both paternally methylated (H19) and maternally
methylated (Snrpn and Peg3) regions were affected (Mar-
ket-Velker et al., 2010). Loss of methylation did not trans-
late directly to an increase in expression of the imprinted
allele in the same blastocysts and without an investigation
into the post-implantation development of these embryos,
it is difficult to extrapolate from methylation change to a
physiological outcome for each individual media system.
However, methylation change at these loci is associated
with control of fetal growth in animal models and with
imprinting disorders in human children (Butler, 2009; Gab-
ory et al., 2010), therefore the importance of these findings
should not be overlooked. A further finding of the paper was
that the addition of superovulation to the protocol
increased the loss of imprinting effect seen at the H19
as a result of periconceptional environment and assisted reproduction
.1016/j.rbmo.2013.06.003
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DMR (Market-Velker et al., 2010), consistent with reports
from human studies of increased incidence of the imprinting
disorder BWS following complex assisted reproduction pro-
tocols (Chang et al., 2005). Indeed, superovulation in mouse
has been shown to affect DNA methylation remodelling post
fertilization (Shi and Haaf, 2002) and alter the expression of
developmentally important genes by the morula stage
(Linke et al., 2012). Interestingly, a further study found that
altered methylation at imprinted loci in villus samples was
associated with errors in the paternal spermatozoa, rather
than with assisted reproduction treatment itself, and
although these samples had often undergone ICSI, the pro-
cedure itself was not the origin of the imprinting error
(Kobayashi et al., 2009).

A comparison of the effects of two in-vitro culture media
systems on the placental transcriptome in mice found that
both systems, M16 (a single complex mouse embryo culture
media) and G1/G2 (a two-step simplex media system),
resulted in a significant alteration in the gene expression
profile of the mid-gestation placenta in comparison to
in-vivo-produced controls (Fauque et al., 2010). Predomi-
nant changes were seen in X chromosome transcripts and
imprinted genes, both being largely induced, while across
the whole genome, affected transcripts were repressed
under both culture conditions (Fauque et al., 2010). Placen-
tal transport efficiency has been demonstrated to depend
on appropriate expression of imprinted genes (reviewed by
Angiolini et al., 2006); thus, epigenetic and gene expression
changes within this tissue or its originating trophoblast line-
age will clearly influence maternal–fetal transport and thus
the growth and health of the developing fetus.

Alterations in histone modifications during preimplanta-
tion mouse development are sufficient to result in altered
gene expression in adult animals and are reportedly trans-
mitted to the following generation. Preimplantation culture
with fetal calf serum to provide suboptimal conditions
altered the tail phenotype of Axin1Fu mice, resulting in a
significant increase in the tail kink phenotype observed in
these mice (Fernandez-Gonzalez et al., 2010). This was
observed in association with reduced trimethylation at H3K9
and increased acetylation at the same residue, consistent
with the phenotype observed after culture with trichostatin
A. Culture alone, with or without fetal calf serum, also
altered the dimethylation of H3K4 (Fernandez-Gonzalez
et al., 2010).

Preimplantation environment and post-
implantation epigenetic change

Epigenetic and gene expression changes initiated in
response to the preimplantation environment may be
important not only at the time of initiation but may have
implications for downstream development. The success of
implantation and placentation is one medium-term outcome
which may be affected, although this period of development
is almost impossible to access in humans except in the case
of pregnancy loss or termination.

Initial analyses have revealed epigenetic changes in cho-
rionic villus samples from spontaneously aborted pregnan-
cies versus induced abortions at a small number of loci,
including H19 hypermethylation. However, no difference
between spontaneously aborted samples from normal con-
Please cite this article in press as: Lucas, E Epigenetic effects on the embryo
technology. Reproductive BioMedicine Online (2013), http://dx.doi.org/10
ception or IVF/ICSI pregnancies was observed (Zheng
et al., 2012). Similarly, Zechner et al. (2010) observed no
difference in chorionic villus methylation between IVF and
ICSI pregnancies after spontaneous loss, nor an increased
rate of epimutation in assisted reproduction pregnancies
overall versus natural conception. The difficulty in inter-
preting these data are that they do not inform on methyla-
tion status of fetal tissues, although clearly there are
significant issues precluding such analysis. Placental tissue
is widely reported to be hypomethylated in relation to fetal
tissue and may exhibit more natural variability (reviewed by
Yuen and Robinson, 2011; Rugg-Gunn, 2012) Furthermore,
whether epigenetic abnormalities are causative or simply
a result of upstream alterations in the developmental
programme is not known and may be answered only by ani-
mal model studies.

Comparison of villus trophoblast and decidual samples
from normal patients and early pregnancy loss patients
revealed a reduced level of the maintenance DNA methyl-
transferase DNMT1 expression in early pregnancy loss tro-
phoblast, although decidual levels did not differ (Yin
et al., 2012). This suggests that abnormal methylation char-
acteristics in the embryonic tissues may be related to early
pregnancy loss at a global level, despite the findings of the
locus-focused reports. However, altered methylation levels
in spontaneously aborted tissue have been reported to be
independent of conception method (Zheng et al., 2011). In
a sheep model, reduced placental expression and activity
of DNMT1 is associated with early losses of in-vitro-pro-
duced embryos (Ptak et al., 2012). Furthermore reduced
mRNA expression levels of DNMT1 cofactors, UHRF1 and
PCNA were also observed (Ptak et al., 2012). DNMT1 con-
centrations were comparable to control concentrations in
those pregnancies surviving past 24 weeks gestation, sug-
gesting that intact methylation pathways are correlated
with developmental competence in in-vitro-produced off-
spring (Ptak et al., 2012). Interestingly, mouse embryos
exposed to the DNA methyltransferase 1 inhibitor procain-
amide showed a reduction in their ability in vitro to adhere
to and invade an Ishikawa cell monolayer (Yin et al., 2012).
Furthermore, administration of procainamide to the mouse
uterus at the time of embryo implantation resulted in
reduced implantation success, reduced embryonic DNA
methylation and increased fetal abnormalities (Yin et al.,
2012).

Together, these findings confirm that adverse epigenetic
change in developing trophoectoderm may feasibly result in
downstream pregnancy loss or altered placental efficiency.
Further investigation will be necessary to link directly the
preimplantation environment and post-implantation devel-
opmental changes to determination of adult phenotype,
health and disease risk.
Influence of the maternal dietary environment

Although there is much data emerging now from human
assisted reproduction cohorts, a considerable contribution
to the understanding of periconceptional sensitivity has
been made by the study of maternal dietary effects on
the developing embryo and resulting offspring (Fleming
et al., 2011). Clearly, the diversity of human diets and the
as a result of periconceptional environment and assisted reproduction
.1016/j.rbmo.2013.06.003
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limitations of intervention during pregnancy mean that
much of the data originates from animal studies.

Periconceptional macro-nutrient content and
maternal physiology

Macro-nutrient studies of maternal nutritional influence
(protein, fat, carbohydrate content) have been character-
ized broadly and reviewed thoroughly elsewhere (Sandovici
et al., 2012; Fleming et al., 2012). Maternal metabolic sta-
tus has been shown to influence the histone modification
profile of mid-gestation fetuses in mouse, with specific
alterations attributable to different metabolic profiles such
as maternal diabetes or obesity (Bermejo-Alvarez et al.,
2012). Such changes leading to altered gene expression of
specific developmentally important genes, such as those
involved in neural tube closure, have clear implications
for developmental success, but in the case of small wide-
spread changes in gene expression, the outcomes may sim-
ply result in phenotypic variation rather than poor health or
disease.

Diet-induced obesity in mice has been shown to result in
reduced fertility via effects on ovarian function and cyclic-
ity and gene expression changes are observed in obtained
blastocysts despite apparently normal development (Berm-
ejo-Alvarez et al., 2012). High fat feeding from conception
to mid-gestation has been shown to result in altered DNA
Please cite this article in press as: Lucas, E Epigenetic effects on the embryo
technology. Reproductive BioMedicine Online (2013), http://dx.doi.org/10
methylation of mouse placenta in a sex-specific manner,
with female placentae becoming globally hypomethylated
(Gallou-Kabani et al., 2010). However, sexual dimorphism
in placental methylation even in control pregnancies high-
lights the complexity of interpreting such data (Gal-
lou-Kabani et al., 2010; Gabory et al., 2012). Differential
sensitivity of the sexes to maternal diet or the in-vitro per-
iconceptional environment will make the predictive power
of extrapolating to human development even more difficult.

Periconceptional dietary micro-nutrient content
and epigenetic change

A pilot study in human subjects reported that preconception
maternal dietary supplementation with micronutrients
including folate, zinc and B vitamins resulted in altered
DNA methylation at imprinted loci (Cooper et al., 2012).
Cord blood DNA samples showed a significant sex-specific
reduction in DNA methylation at the IGF2R DMR in female
offspring and at the GTL2 DMR2 in male offspring, although
these differences were not evident in DNA from the same
infants at 9 months old (Cooper et al., 2012). In addition,
methylation differences became evident in female infants
at 9 months of age at the GNASAS and PEG1 DMR suggesting
longer-term influences of maternal diet on the offspring epi-
genetic profile (Cooper et al., 2012). However, in the case
of both cord and peripheral blood samples, gene expression
as a result of periconceptional environment and assisted reproduction
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analysis was not reported so it is not possible as yet to
determine a functional effect of these methylation changes.

A prospective study focusing specifically on maternal
folate status in human pregnancy and offspring methylation
found no association between periconceptional or first-tri-
mester supplementation and offspring imprinted gene
(PEG3, IGF2, SNRPN) or LINE-1 methylation in umbilical cord
blood (Haggarty et al., 2012); however, supplementation in
the second trimester of pregnancy was associated signifi-
cantly with increased methylation of the IGF2 DMR and
decreased methylation of PEG3 and LINE-1 sequences (Hag-
garty et al., 2012). In another report, maternal folic acid
supplementation alone during the periconceptional period
has been linked to the methylation status of IGF2 DMR in
whole-blood genomic DNA from 17-month-old children, with
increased methylation levels associated to supplementation
and with an inverse correlation between methylation status
and birthweight (Steegers-Theunissen et al., 2009).
Although blood sampling is a relatively easy source of DNA
for analysis, it is unclear how readily methylation and
expression data in blood can be translated to more global
effects. The relatively short lifespan of blood cells suggests
that the haematopoietic precursors would need to be
affected in order to see long-term effects in blood samples.
Clearly this is more difficult to examine. Although the link
between folate availability and haematopoiesis is an impor-
tant one, the role of folate in the methyl cycle and one-car-
bon metabolism will contribute to methylation status in
many tissues. For example, periconceptional deficiency of
methionine and B vitamins, including folate, in sheep
resulted in alteration of around 4% of loci examined by a
global screening method, RLGS, in offspring liver (Sinclair
et al., 2007). Of these 88% were either hypomethylated or
completely unmethylated (Sinclair et al., 2007) suggesting
a consistent directional response to changes in maternal
nutrient availability during the periconceptional period.

Conclusions

Early embryonic development is a period with remarkable
influence on the later health of the developing organism.
The role of the preimplantation environment in the success
of early development cannot be underestimated (Figure 2).
However, while animal studies have shown clear interac-
tions between the periconceptional environment, be it
in vivo or in vitro, and both short- and long-term develop-
mental measures in the offspring, conflicting reports arise
from human studies. This is attributable in large part to
the presence of multiple confounding issues (genetic, life-
style and clinical) and the difficulty in studying early human
development. However, as discussed in this article, it
appears that in some cases the animal findings may trans-
late directly. The merit of animal work lies in the ability
to control the elements that confound human research
and identify causal relationships between the embryonic
environment and the ongoing developmental success and
health of the offspring. The difficulty lies in the application
of such findings to population advice both without exagger-
ation and with realism. With increasing use of assisted
reproduction treatment and rising maternal ages, as well
as the trend towards obesity and associated health issues
Please cite this article in press as: Lucas, E Epigenetic effects on the embryo
technology. Reproductive BioMedicine Online (2013), http://dx.doi.org/10
in Western societies there is an increasing need to under-
stand the environmental effects on gamete and embryo
development and the potential for these effects to be trans-
ferred to subsequent generations.
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